Generalized Hamming Weights of Nonlinear Codes and the Relation to the Z4-Linear Representation

نویسندگان

  • Ilan Reuven
  • Yair Be'ery
چکیده

In this correspondence, we give a new definition of generalized Hamming weights of nonlinear codes and a new interpretation connected with it. These generalized weights are determined by the entropy/length profile of the code. We show that this definition characterizes the performance of nonlinear codes on the wire-tap channel of type II. The new definition is invariant under translates of the code, it satisfies the property of strict monotonicity and the generalized Singleton bound. We check the relations between the generalized weight hierarchies of Z4linear codes and their binary image under the Gray map. We also show that the binary image of a Z4-linear code is a symmetric, not necessarily rectangular code. Moreover, if this binary image is a linear code then it admits a twisted squaring construction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Computation of Minimum Hamming Weight for Linear Codes

In this paper, we consider the minimum Hamming weight for linear codes over special finite quasi-Frobenius rings. Furthermore, we obtain minimal free $R$-submodules of a finite quasi-Frobenius ring $R$  which contain a linear code and derive the relation between their minimum Hamming weights. Finally, we suggest an algorithm that computes this weight using the Grobner basis and we show that und...

متن کامل

Translates of Linear Codes Over

We give a method to compute the complete weight distribution of translates of linear codes over Z4. The method follows known ideas that have already been used successfully by others for Hamming weight distributions. For the particular case of quaternary Preparata codes, we obtain that the number of distinct complete weights for the dual Preparata codes and the number of distinct complete coset ...

متن کامل

Further Results on Generalized Hamming Weights for Goethals and Preparata Codes Over Z4

This paper contains results on the generalized Hamming weights for the Goethals and Preparata codes over Z 4 : We give an upper bound on the rth generalized Hamming weights d r (m; j) for the Goethals code G m (j) of length 2 m over Z 4 , when m is odd. We also determine d 3:5 (m; j) exactly. The upper bound is shown to be tight up to r = 3:5. Furthermore we determine the rth generalized Hammin...

متن کامل

Isometries and Binary Images of Linear Block Codes over Z4+uZ4 and Z8+uZ8

Let F2 be the binary field and Z2r the residue class ring of integers modulo 2 , where r is a positive integer. For the finite 16-element commutative local Frobenius nonchain ring Z4 + uZ4, where u is nilpotent of index 2, two weight functions are considered, namely the Lee weight and the homogeneous weight. With the appropriate application of these weights, isometric maps from Z4 + uZ4 to the ...

متن کامل

Linear Codes over Galois Ring GR(p2, r) Related to Gauss sums

Linear codes over finite rings become one of hot topics in coding theory after Hommons et al.([4], 1994) discovered that several remarkable nonlinear binary codes with some linear-like properties are the images of Gray map of linear codes over Z4. In this paper we consider two series of linear codes C(G) and C̃(G) over Galois ring R = GR(p2,r), where G is a subgroup of R(s) ∗ and R(s) = GR(p2,rs...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Information Theory

دوره 45  شماره 

صفحات  -

تاریخ انتشار 1999